Lossless Join Decomposition

decomposition of a relation R into relations R1, R2 such that if we perform a natural join of two smaller relations it will return the original relation

$$ R_1 ∪ R_2 = R, R1 ∩ R2 \neq \phi $$

$$ \forall r \in R, r_1 = \Pi_{R_1}(r), r_2 = \Pi_{R_2}(r) $$

$$ r_1 \bowtie r_2 = r $$

<aside> 💡 Decompostion is lossy if $r_1 \bowtie r_2 \supset r$

</aside>

Checking for lossless join decomposition

Atomicity of a domain

Functional Dependency

Let R be a relation schema

$$ \alpha \subseteq R \textrm{ and } \beta \subseteq R $$

The functional dependency or FD

$$ α → β $$