decomposition of a relation R into relations R1, R2 such that if we perform a natural join of two smaller relations it will return the original relation
$$ R_1 ∪ R_2 = R, R1 ∩ R2 \neq \phi $$
$$ \forall r \in R, r_1 = \Pi_{R_1}(r), r_2 = \Pi_{R_2}(r) $$
$$ r_1 \bowtie r_2 = r $$
<aside> 💡 Decompostion is lossy if $r_1 \bowtie r_2 \supset r$
</aside>
Union of Attributes of $R_1$ and $R_2$ must be equal to attribute of $R$
$$ R_1 \cup R_2 = R $$
Intersection of Attributes of $R1$ and $R_2$ must not be NULL
$$ R_1 \cap R_2 \neq \phi $$
Common attribute must be a key for at least one relation ($R_1$ or $R_2$)
$$ R_1 \cap R_2 \rightarrow R_1 \textrm{ or } R_1 \cap R_2 \rightarrow R_2 $$
Let R be a relation schema
$$ \alpha \subseteq R \textrm{ and } \beta \subseteq R $$
The functional dependency or FD
$$ α → β $$