Marginal Rate of Technical Substitution (MRTS)

Amount by which the quantity of one input can be reduced when one extra unit of another input is used, so that output remains constant.

$$ MRTS = -\frac{\Delta K}{\Delta L} = -\frac{MP_1}{MP_2} $$

Untitled

Cost Minimisation

$$ \min w_1x_1 + w_2x_2 \hspace{0.5cm} \text{ s.t. } y \le f(x_1,x_2) $$

where,

$w_1$ is cost of input 1 and $x_1$is amount of input 1.

Conditional Input Demand Function

$$ x_1^* = x_1^(w_1,w_2,y) \\ x_2^ = x_2^*(w_1,w_2,y) $$

Isocost Line

Graph showing all possible combinations of labor and capital that can be purchased for a given total cost.

Different Production Functions

Linear Production Function

$$ y = \alpha x_1 + \beta x_2 $$

Minimised Cost:

$$ \min (\frac{w_1}{\alpha}, \frac{w_2}{\beta}) . y

$$

$$ x_1^* = \begin{cases} \frac{w_1}{\alpha}.y && \frac{w_1}{\alpha} < \frac{w_2}{\beta} \\ = 0 && \frac{w_1}{\alpha} > \frac{w_2}{\beta} \\ = y - \beta x_2^* && \frac{w_1}{\alpha} = \frac{w_2}{\beta} \end{cases} $$

Cost Function: